Honeywell

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

Nguyen Minh

Galveston, TX February 26, 2002

DOE Program Objective

Overall objective

 Develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar solid oxide fuel cell (SOFC) and microturbine

Approach

- Technology base:
 - Planar SOFC technology
 - Microturbine technology
- System approach along with other design methodologies

Program Features

SOFC Hybrid System Concept

Simplified SOFC System & Components

Key System Features

SOFC

- High-performance reduced-temperature planar cells
- Honeywell low-cost tape calendering manufacturing process

Microturbine

Commercial systems

Other subsystems

- Fuel processor
- Thermal management
- Flexible control subsystem

System Design Approach

Design Criteria for Conceptual System

- Efficiency
- Cost
- High reliability
- Small volume (but not at the expense of efficiency)

Assumptions for DOE System Design

- Natural gas
- Base-load system operation
- Pressurized SOFC operation
- High fuel utilization ~75% in SOFC with possible internal reforming
- Cell voltage ~0.75 V at a reasonable current density
- Commercially available microturbine & turbocharger
- High-temperature heat transfer equipment will be available

Performance Estimate for a SOFC-Microtubine Hybrid System

System Net Power 475 kW

Microturbine Power 97 kW

SOFC Power 384 kW

System Efficiency 67%

Control System Design Approach

Control System Definition

- Supervisory control
- System health monitoring
- Sensing and measurement
- Valves/Actuators

SOFC Stack Design Features

- Anode-supported thin-electrolyte cells to permit efficient operation at reduced temperatures
- Lightweight metallic structures to achieve high power densities
- Stack design flexibility including gas manifold and flow configuration

Cell Fabrication

High-Performance Anode-Supported SOFC

SOFC Cell Performance

- 800°C operation
- Peak power density:
 - 1.3 W/cm² in hydrogen
 - 0.85 W/cm² in syngas

Cell Fuel Utilization

SOFC Stack Performance

- 10 cm x 10 cm footprint
- 800°C operation in hydrogen and air at ambient pressure
- Power:
 - 1.1 kW at 0.7 V / cell
 - 1.4 kW at peak power
- Power density:
 - 0.42 W/cm2 at 0.7 V/cell
 - 0.6 W / cm² at peak power
 - 0.7 kW / kg, 0.7 kW / L at peak power
 - 0.53 kW / kg, 0.53 kW / L at 0.7 V/cell

Stack Thermal Cycling

Stack 28 Performance at 800oC in H2

- Multiple thermal cycles without significant performance degradation
- Minimal change in open circuit voltage and voltage under load between cycles

SOFC Performance Enhancement with Pressure

- Cell performance is enhanced with pressurized operation thermodynamically and kinetically
 - Increase in Nernst potential
 - Decrease in activation polarization
 - Exchange current density
 - Decrease in concentration polarization
 - Limiting current density

Nernst Potential Increases with Pressure

Electrode Kinetics Enhanced with Pressure

Pressure will benefit electrode kinetics through increase in both exchange current density and limiting current density

Exchange Current Density io

Electrode Limiting Current Density ia

SOFC Performance Projection

- •Significant performance enhancement observed from 1 to 3 atm
- •Moderate performance improvement expected from 4 to 10 atm

Pressurized SOFC Performance

Concluding Remarks

- SOFC-turbine hybrids have potential for high efficiencies over a broad range of system sizes
- Preliminary system concepts have been evaluated
- Pressurized operation for planar SOFCs has been demonstrated